MAPR 2025 THE 8th INTERNATIONAL CONFERENCE ON MULTIMEDIA ANALYSIS AND PATTERN RECOGNITION ## Generative One-shot Camouflage Instance Segmentation Thanh-Danh Nguyen^{1,2}, Vinh-Tiep Nguyen^{†1,2}, and Tam V. Nguyen³ ¹University of Information Technology, Ho Chi Minh City, Vietnam, ²Vietnam National University, Ho Chi Minh City, Vietnam, ³University of Dayton, Dayton, OH 45469, United States {danhnt, tiepnv}@uit.edu.vn, tamnguyen@udayton.edu, †corresponding author ### INTRODUCTION Motivation: Addressing camouflage instance segmentation (CIS) efficiently given one-shot annotated samples. Main contribution: CAMO-GenOS, a CIS framework leveraging one-shot annotated samples to drive a generative process for data enrichment. Fig. 1. Our CAMO-GenOS Concept Idea Presentation. #### METHOD Our **CAMO-GenOS** is a generative approach to exploit and enrich the one-shot CIS task. Fig. 2. Overview of our CAMO-GenOS framework leveraging generative models to enhance one-shot camouflage instance segmentation. One-shot Fine-tuning CIS: The CIS model is presented in two phases: - Base phase: training with abundant annotated training data C_{base} - Novel phase: fine-tuning on a disjoint set of novel classes C_{novel} containing one sample per each class of novel data In our case, the one-shot fine-tuning relies on a single annotated sample, enriched by our proposed generative instance synthesis method. #### Diffusion-based Multi-Conditional Instance Synthesis: The diffusion-based generative model G(.) strictly takes the multiple conditions of the referenced query image $I_a \in \text{novel}$ training samples in C_{novel} , ground truth mask M_a , and guided text prompt P_q to return N_{auq} samples. - Metadata-Driven Conditional Text Prompt follows the structure: "a photo of a/an [size] [meta-class] [instance class]" - Histogram Matching Post-processing is to narrow the gap between the distribution of the original and the synthesized samples #### RESULT Tab. 1. SoTA comparison of our CAMO-GenOS evaluated on CAMO-FS benchmark. The backbones are COCO-80 FPN-ResNet-101 | Method | Synthesis Base | nAP | | nAP50 | nAP75 | nAPs | nAPm | nAPl | nAR1 | |--|--|------------------------------|-------------------------|------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------|----------------------------------| | Mask-RCNN [28]
iMTFA [11]
iFS-RCNN [10]
FS-CDIS [7] | | 2.99
3.66
4.27
4.46 | _ | 5.73
5.37
5.98
7.34 | 3.26
4.09
4.75
4.84 | 20.68
22.42
21.57
25.50 | 3.06
4.35
5.71
5.60 | 2.74
2.01
4.87
3.48 | 12.45
11.30
11.70
14.77 | | CAMO-GenOS
(ours) | BlendedDiff [19] DiffInpainting [17] GLIGEN [18] | 4.80
4.91
4.74 | +0.34
+0.45
+0.28 | 7.79
7.84
7.53 | 5.37
5.47
5.31 | 28.59
26.54
28.10 | 5.67
5.06
4.79 | 3.32
4.02
5.28 | 17.85
17.18
17.65 | Tab. 2. Ablation study on multiple instance generation-based methods | Instance Segmentation | | | | Object Detection | | | | | |-----------------------|--|--|---|--|---|---|--|--| | nAP | | nAP50 | nAP75 | nAP | | nAP50 | nAP75 | | | 4.46 | | 7.34 | 4.84 | 3.88 | | 7.71 | 3.21 | | | 4.55 | | 7.52 | 4.94 | 3.99 | | 7.92 | 3.47 | | | 3.94 | | 7.44 | 3.64 | 4.01 | | 8.05 | 3.44 | | | 4.10 | | 7.40 | 4.15 | 3.99 | | 7.82 | 3.40 | | | | | | | | | | | | | 4.80 | +0.34 | 7.79 | 5.37 | 4.90 | +1.02 | 8.09 | 4.78 | | | 5.16 | +0.61 | 8.25 | 5.73 | 4.97 | +0.98 | 8.54 | 5.08 | | | 4.19 | +0.25 | 7.98 | 4.54 | 4.75 | +0.74 | 8.38 | 5.16 | | | 4.25 | +0.15 | 7.36 | 4.71 | 4.79 | +0.80 | 7.71 | 4.52 | | | 4.91 | +0.45 | 7.84 | 5.47 | 5.00 | +1.12 | 8.33 | 5.26 | | | 4.80 | +0.25 | 7.90 | 5.32 | 4.97 | +0.98 | 8.29 | 4.61 | | | 4.04 | +0.10 | 7.21 | 4.34 | 4.68 | +0.69 | 7.84 | 4.84 | | | 4.29 | +0.19 | 7.30 | 4.60 | 4.70 | +0.71 | 7.83 | 4.86 | | | 4.74 | +0.28 | 7.53 | 5.31 | 4.83 | +0.95 | 7.94 | 4.85 | | | 5.30 | +0.75 | 8.26 | 6.02 | 5.23 | +1.24 | 8.63 | 5.61 | | | 4.39 | +0.45 | 7.28 | 4.86 | 4.52 | +0.51 | 7.87 | 4.52 | | | 4.33 | +0.23 | 7.28 | 4.74 | 4.75 | +0.76 | 7.62 | 5.52 | | | | 4.46
4.55
3.94
4.10
4.80
5.16
4.19
4.25
4.91
4.80
4.04
4.29
4.74
5.30
4.39 | 4.46
4.55
3.94
4.10
4.80 +0.34
5.16 +0.61
4.19 +0.25
4.25 +0.15
4.91 +0.45
4.80 +0.25
4.04 +0.10
4.29 +0.19
4.74 +0.28
5.30 +0.75
4.39 +0.45 | 4.46 7.34 4.55 7.52 3.94 7.44 4.10 7.40 4.80 +0.34 7.79 5.16 +0.61 8.25 4.19 +0.25 7.98 4.25 +0.15 7.36 4.91 +0.45 7.84 4.80 +0.25 7.90 4.04 +0.10 7.21 4.29 +0.19 7.30 4.74 +0.28 7.53 5.30 +0.75 8.26 4.39 +0.45 7.28 | 4.46 7.34 4.84 4.55 7.52 4.94 3.94 7.44 3.64 4.10 7.40 4.15 4.80 +0.34 7.79 5.37 5.16 +0.61 8.25 5.73 4.19 +0.25 7.98 4.54 4.25 +0.15 7.36 4.71 4.91 +0.45 7.84 5.47 4.80 +0.25 7.90 5.32 4.04 +0.10 7.21 4.34 4.29 +0.19 7.30 4.60 4.74 +0.28 7.53 5.31 5.30 +0.75 8.26 6.02 4.39 +0.45 7.28 4.86 | 4.46 7.34 4.84 3.88 4.55 7.52 4.94 3.99 3.94 7.44 3.64 4.01 4.10 7.40 4.15 3.99 4.80 +0.34 7.79 5.37 4.90 5.16 +0.61 8.25 5.73 4.97 4.19 +0.25 7.98 4.54 4.75 4.25 +0.15 7.36 4.71 4.79 4.91 +0.45 7.84 5.47 5.00 4.80 +0.25 7.90 5.32 4.97 4.04 +0.10 7.21 4.34 4.68 4.29 +0.19 7.30 4.60 4.70 4.74 +0.28 7.53 5.31 4.83 5.30 +0.75 8.26 6.02 5.23 4.39 +0.45 7.28 4.86 4.52 | 4.46 7.34 4.84 3.88 4.55 7.52 4.94 3.99 3.94 7.44 3.64 4.01 4.10 7.40 4.15 3.99 4.80 +0.34 7.79 5.37 4.90 +1.02 5.16 +0.61 8.25 5.73 4.97 +0.98 4.19 +0.25 7.98 4.54 4.75 +0.74 4.25 +0.15 7.36 4.71 4.79 +0.80 4.91 +0.45 7.84 5.47 5.00 +1.12 4.80 +0.25 7.90 5.32 4.97 +0.98 4.04 +0.10 7.21 4.34 4.68 +0.69 4.29 +0.19 7.30 4.60 4.70 +0.71 4.74 +0.28 7.53 5.31 4.83 +0.95 5.30 +0.75 8.26 6.02 5.23 +1.24 4.39 +0.45 7.28 4.86 4.52 +0.51 | 4.46 7.34 4.84 3.88 7.71 4.55 7.52 4.94 3.99 7.92 3.94 7.44 3.64 4.01 8.05 4.10 7.40 4.15 3.99 7.82 4.80 +0.34 7.79 5.37 4.90 +1.02 8.09 5.16 +0.61 8.25 5.73 4.97 +0.98 8.54 4.19 +0.25 7.98 4.54 4.75 +0.74 8.38 4.25 +0.15 7.36 4.71 4.79 +0.80 7.71 4.91 +0.45 7.84 5.47 5.00 +1.12 8.33 4.80 +0.25 7.90 5.32 4.97 +0.98 8.29 4.04 +0.10 7.21 4.34 4.68 +0.69 7.84 4.29 +0.19 7.30 4.60 4.70 +0.71 7.83 4.74 +0.28 7.53 5.31 4.83 +0.95 7.94 5.30 +0.75 8.26 < | | **ORGANIZERS** **SPONSORS**